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Slow relaxation in weakly open rational polygons
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The interplay between the regular~piecewise-linear! and irregular~vertex-angle! boundary effects in non-
integrable rational polygonal billiards~of m equal sides! is discussed. Decay dynamics in polygons~of perim-
eter Pm and small openingD) is analyzed through the late-time survival probabilitySm;t2d. Two distinct
slow relaxation channels are established. The primary universal channel exhibits relaxation of regular sliding
orbits, withd51. The secondary channel is given byd.1 and becomes open whenm.Pm /D. It originates
from vertex order-disorder dual effects and is due to relaxation of chaoticlike excitations.
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I. INTRODUCTION

Classical polygonal billiards is an active subject of r
search in mathematics and physics~see Ref.@1# for review!.
In view of their null Lyapunov exponent and null Kolmog
orov metric entropy, rational polygons, formed by t
piecewise-linear billiard boundary with the vertex angles t
are rational multiplies ofp, are known to benonchaotic
systems@1–6#. They are therefore quite distinct from th
Sinai billiard ~SB! @7# and the Bunimovich billiard~BB! @8#
in which classicalchaoticmotion regimes are due to, respe
tively, dispersiveeffects caused by the disk and the squ
boundary, and theinterplay between boundary segmen
formed by the circle and the square. Rational polygons om
equal sides andm equal vertices~hereafter,m-gons@1#! have
been shown@9# however to possess positive Lyapunov exp
nents with increasingm. Furthermore, polygonal billiards ex
hibit chaoticlike changes in the associated quantum-le
spectra@10#, the fluctuations of which are found@11,12# to be
very close to the standard Gaussian statistics. These ch
clike features are due to thesplitting effects caused by the
angle vertices. Vertex-splitting effects, even being related
zero-measure singularities in phase space, violate the inte
bility of polygons,@2,13# as well as the classical-to-quantu
correspondence principle@6# for chaotic billiards geometri-
cally approximated~quantized! by polygons. The latter was
recently reported by Mantica@6#, who found a logarithmi-
cally divergent contribution by vertices to the algorithm
complexity of symbolic trajectories. As to nonchaotic sy
tems, exemplified by circle billiard~CB! and analyzed
through the average coding length, it was argued@6# that the
correspondence principle between the classical integr
CB and its nonintegrablem-gonal quantum counterpart i
valid whenm→`.

The delicate interplay between the regular~piecewise-
linear! and the irregular~vertex-angle! boundary segments in
polygons provides interesting features that cannot be un
stood solely in terms of the averaged temporal and spa
polygonal characteristics. Besides the chaoticlike effe
there were attempts to find long-range correlations in
orbit-length@14# and quantum-level@11# spectral character
istics of rational and irrational polygons. The orbit-wa
1063-651X/2003/68~1!/016221~8!/$20.00 68 0162
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collision statistics@15,16# applied tom-gons @17# revealed
the late-time memory effects driven by long-livedsliding
orbits. These orderlike orbits show regular~mean! and
anomalous ~root-mean-square! wall-collision behavior,
which is responsible for superdiffusiveintrinsic dynamics
@17# in rational polygons with large numbers of sidesm. The
sliding orbits in the infinite-m polygon (̀ -gon! has no ana-
log in the ballistic dynamics of its counterpart given by t
CB, where the orbit classification is well established@18#.
The dynamic correspondencefound @6# between a given
m-gon and the CB is therefore violated by sliding orbits~see
Fig. 1 in Ref.@17#! despite the existence ofgeometric corre-
spondence, which can be controlled via the concept of ave
aged characteristics~such as mean collision time@17# or av-
eraged coding length@6#! with arbitrary precision whenm
→` ~see Fig. 4 in Ref.@6#!. This finding is in line with a
conclusion on inapplicability in polygons of the quantum-t
classical correspondence elaborated@12# within the scope of
the conventional Wentzell-Kramer-Brillouin picture, whic
fails to establish a one-to-one correspondence between
sical orbits and their quantum counterparts.

The objective of the present paper is a further investi
tion of memory effects induced by sides and vertices in
tional finite-m weakly open polygons, in which the bound
aries permit orbits to escape through a small opening.
will show that the sliding orbits, responsible for the e
hanced diffusive regime in the intrinsic dynamics@17# of
closed m-gons, give rise to qualitatively new vertex
correlation effects in late-time decay dynamics. For cert
geometrical conditions, the sliding orbits generate vortexl
excitations, which remain stable in large-m rational polygons
and provide a specific channel of relaxation common to c
otic billiards. The paper is organized as follows. Decay d
namics in chaotic and nonchaotic billiards is reviewed
Sec. II, within the context of distinct channels of relaxatio
Weakly open rational polygons are analyzed numerically a
analytically in Sec. III for the cases of small and large nu
bersm. Summary and conclusions are given in Sec. IV.

II. DECAY DYNAMICS OF CHAOTIC AND
NONCHAOTIC BILLIARDS

The intrinsic dynamics of closed classical billiards
commonly discussed in terms of a temporal decay of co
©2003 The American Physical Society21-1
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lation functions for certain dynamical variables~see, e.g.,
Ref. @19#!. A pure exponential loss of an amount of memo
of the initial state is not a unique channel of relaxation ev
in chaotic systems~see, e.g., Ref.@20#!. By studying chaotic
billiards, such as the SB@20–23#, that is dynamically equiva-
lent to the Lorentz gas~LG! with a corresponding geometr
@19# and the BB@8,24,25#, it has been recognized that
crossover from the short-time exponential to the late-ti
algebraic decay is due to long-term memory on a regu
orbit motion. The algebraic tail of the correlation functio
seems to vanish only in the case of completely hyperb
systems which correspond to geometries such as the fi
horizon SB@19,22# ~equivalent to the high-density LG! or
the diamond billiard@19#. Qualitatively, the same can be a
serted for the decay dynamics in weakly open billiards wh
describes a crossover from a bounded to an unbounded
motion of orbits. Such a decay dynamics is initially esta
lished byN(0) uniformly distributed point particles~of unit
mass and unit velocity! moving inside the closed planar bi
liard table, which are allowed to escape through a sm
opening of widthD. A temporal behavior of the dynami
observables can be scaled to the characteristic billiard tim
These aremean collision time@19,26,27# tc and themean
escape time@16,19,24,28# te , namely,

tc5
pA

P
and te5

P

D
tc , ~1!

given through the accessible areaA and the perimeterP
(@D) for a billiard table. The late-time evolution ofN(t)
nonescaped orbits~particles! provides an asymptotic behav
ior of the billiard survival probability S(t), which is defi-
nitely characterized by the algebraic-decaydynamic expo-
nentd:

S~ t !5
N~ t !

N~0!
}S te

t D d

for t@te . ~2!

For the nonchaotic square billiard, the algebraic de

with exponentsd ,
'1 was reported in Ref.@28#. In a careful

study of the decay dynamics in the integrable CB, the alm
integrable@1# 4-gon established@16# two distinct channels of
algebraic slow relaxation given in Eq.~2!. The first is due to
the regular-orbit motion with the decay exponentd51 and
the second channel originates from irregular orbits, wh
give rise to a subdiffusive regime indicated@16# for the
square billiard byd,1. The irregular-orbit motion is known
in both cases. For the CB and the 4-gon, this is due to
short-lived whispering-gallery and long-lived bouncing-b
orbits, respectively. Nevertheless, the short-lived orbits
not contribute to the second channel of late-time relaxat
and therefore only a unique decay exponentd51 is observed
@16# in the integrable case.

In chaotic closed and weakly open classical systems~in-
cluding Hamiltonian systems!, exemplified by the BB
@24,25,29,30#, the infinite-horizon SB@15,20,21,23,31,32#,
and the corresponding low-density LG@22,33,34#, the over-
all algebraic decay was found numerically with th
geometry-dependent exponentsd>1. Similar to the noncha-
otic case, it has been repeatedly recognized that the alge
01622
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tail is caused by the ‘‘arbitrary long segments,’’ observed
the evolution of stochastic orbits@25#, or by the regular-orbit
motion due to ‘‘sticking particles’’@30,35#. This implies that
relaxation given in Eq.~2! is due to free motion of the cor
responding trajectories in the infinite distinctcorridors
which are accessible in the relevant phase space@31–33#.
The algebraic-relaxation channel withd51~hereafter,a-
relaxation channel! established in chaotic@15,20,24,31,32# as
well as in nonchaotic@16,28# billiards appears to be generi
for all incompletely hyperbolic systems with smooth conv
boundaries. The independence with respect to the billi
spatial dimension@32#, its insensitivity to details of the
boundary shape@16#, including a location of a small openin
@24#, and to the initial conditions@16# suggests that late-time
a relaxation arises in classical systems as auniversal pri-
mary relaxation.

In chaotic@15# and nonchaotic@16# weakly open classica
systems, slowa relaxation is a part of the universal two-ste
relaxation scenario consisting of the short-time pure ex
nential decay,S(t)}e2(t/te)g

, with g51, and the late-time
algebraic decay, withd51. This scenario follows from the
billiard survival probability found@15,16# in explicit form,
namely,

S~ t !5

erfS t

te2
1

te1

te2
D2erfS t

te2
2

te1

te2
D

2erfS te1

te2
D

3expF t

te2
S t

te2
22

te1

te2
D G , ~3!

where erf(x) is the standard error function. The characteris
timeste1 ,te2 (;te), which depend crucially on specific bil
liard geometry, establish temporal observation conditio
~hereafter, observation windows!: 0<t,min(te1,te2) and
max(te1,te2),t,tmax, respectively, for the universa
g51-exponential andd51-algebraic channels of relaxation
The upper limit of thea-relaxation observation windowtmax
was defined analytically@15,16# and numerically@16#, but
there are certain geometrical situations when this wind
disappears@31,36#. Keeping in mind that the explicit form o
S(t) is deduced from the fundamental decay-kinetics eq
tion under general Gaussian-escape-mechanism assump
@15,16#, it seems plausible that the universal decay of tw
dimensional~2D! classical systems can be given by a gene
form of Eq. ~3! with specific parameterste1 andte2, which
can be established, similar to chaotic@15# and nonchaotic
@16# cases. It is noteworthy that in the context of exac
solvable 1D random walks, a slow universal relaxation w
S(t)}t21 emerges@37,38# as history-dependent steps wi
an absorbing origin in the presence of an ideal reflec
which play the role of billiard opening and regular bounda
respectively.

A survival probability for the intermediate,nonuniversal
transient regime also follows from Eq.~3!, which was ap-
proximated by a stretched-exponential form@15# with g
,1, studied earlier analytically@39# and numerically@19# in
chaotic billiards. Other nonuniversal algebraic decays w
1-2
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SLOW RELAXATION IN WEAKLY OPEN RATIONAL POLYGONS PHYSICAL REVIEW E68, 016221 ~2003!
dÞ1 were explored in Refs.@20,24,31,32,37,38#. Unlike the
case of primary relaxation, thesecondary relaxationin cha-
otic billiards with (b5) d.1 ~hereafter,b relaxation! is
shown to be very sensitive to the billiard geometry@16#, the
dimension@32# d of a billiard table, and the initial condition
@16#. This can be exemplified by the dynamic-exponent c
straint 1,b<d proposed in Ref.@32# and observed in the
chaotic BB @24# and SB@20,31,32#. For d51, this regime
corresponds to an unbiased random walk in a ‘‘hostile en
ronment’’ @38#.

One can see that incomplete hyperbolic billiards, on o
hand, are indiscernible from their decay dynamics, obser
solely through the primary universala-relaxation channel.
On the other hand, chaotic and nonchaotic weakly open
liards are well distinguished with respect to nonuniversal
laxations through the continuously variable@38# dynamic ex-
ponentsb.1 andd,1, respectively. In what follows, we
give theoretical and numerical analyses of the stability c
ditions of both the primary and secondary relaxation ch
nels in rational polygons.

III. ORBIT DECAY IN POLYGONS

We deal with rational polygons ofm equal sides, denomi
nated asm-gons, circumscribed below a circle of radiusR.
The mean collision timetcm5(pR/2)cos(p/m) and the mean
escape timetem5(pR2m/2D)sin(2p/m) can be found on the
basis of Eq. ~1! with the help of area Am
5(mR2/2)sin(2p/m) and perimeterPm52mRsin(p/m). In
the limit m→` one naturally arrives at the circle geomet
of the `-gon with the mean timestc`5tcR

(CB)5pR/2 and
te`5teR

(CB)5p2R2/D, both characteristic of the CB. Thi
demonstrates how average dynamic characteristics can b
troduced through the aforementioned geometrical corresp
dence that takes place between the`-gon and the CB. In
view of the vertex-memory effects, which forbid interchan
between of the temporal (t→`) and spatial (m→`) limits,
the dynamical correspondence does not exist@17#.

A. Small numbers of vertices

Similar to the closedm-gons@17#, let us consider the cas
of a small numbers of vertices,m,10, in the context of the
deterministic approach to the regular-orbit description@16#.
This is straightforwardly given by the fact that the wa
collision anglesw ~defined with respect to the normal to th
piecewise-linear boundary and preserved by elastic re
tions! are integrals of motion, as is true for complete in
grable billiards. Such a description of regular-orbit motion
rational polygons is introduced accounting for the obser
tion @40# thatm ~or m/2) sides of a givenm-gon, with odd~or
even! number of vertices, are dynamically equivalent. T
wall-collision statistics for regular orbits with a fixe
collision-anglew can therefore be reduced to the intervalw
5@0,wm#, where

wm5H p/2m for odd m

p/m for evenm.
~4!
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The regular orbits with a givenw are thereby distinguished
through thew-orbit characteristic collision times, namely,

tcm~w!5
pR

2

sin~wm!cos~p/m!

wmcos~w2cm!
, ~5!

with

cm5H 0 for odd m and m/2

p/m for even m/2,
~6!

~see the Appendix for details!. The w-orbit collision time is
related to the billiard mean collision timetcm through the
mean-collision-time equation, namely,

^tcm~w!&c[E
0

wm
tcm~w! f 0m~w!dw5tcm , ~7!

which is equivalent to the mean-free-path equation@19#.
Equation ~7! was considered@16,19,26# in the uniformly
populatedwall-collision spaceVcm , which is 2D subspace
of the 3D phase spaceVm . Thew-orbit distribution function,
namely,

f 0m~w!5H cos~w2cm!

sin~wm!
for spaceVcm

tcm~w!

tcm

cos~w2cm!

sin~wm!
[

1

wm
for spaceVm

~8!

is defined in Eq.~7! and found here via generalization o
Eqs.~6! and ~7! in Ref. @16#.

Let us discuss the late-time (t@tem) survival dynamics in
a given m-gon through~i! the w-orbit decay spectra pre
sented by the partial-orbit numbersNm(t,w) and~ii ! the cor-
responding total-orbit numbersNm(t) of survived initial par-
ticles Nm(0). The universal relaxation channel, associat
with regular orbits, is described by the late-time evolution
nonescaped orbits, predicted by the leading asymptotic te
of Eq. ~3!, adapted for nonchaotic open billiards@16# and
represented here form-gons, namely,

Nm~ t,w!

Nm~0!
5Cm~w!

tcm~w!

tcm
f 0m~w!

tem

t
and

Nm~ t !

Nm~0!
5Dm

tem

t
.

~9!

The partial-orbit and overall-orbitamplitudesof a relaxation
denoted, respectively, byCm(w) and Dm in Eq. ~9! can be
measured directly and found analytically in an explicit for
within a certain coarse-grained scheme@15,16#. On the other
hand, the main regular-orbit dynamic characteristics, such
aforegiventcm(w), f 0m(w), and tcm , are common to both
the decay and intrinsic dynamics. By employing a conditi
of self-consistency^Nm(t,w)&c5 Nm(t), which follows
from Eqs.~9! with the help of Eq.~7!, one therefore intro-
duces the constraint imposed on the primary-relaxati
regular-orbit amplitudes through thea-amplitude equation:
^Cm(w)&c[Ccm5Dcm . For the integrable CB of radiusR,
this equation was experimentally justified@16#, i.e., CcR

(exp)

5DcR
(exp)50.21060.004 was established with an accura

limited by a typical statistical error of62% ~see Table 2 in
1-3
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Ref. @16# for the CB data!. In view of vertex-splitting effects,
which violate the property of integrability@4#, one should
expect the violation of thea-amplitude equation in poly-
gons, i.e.,Ccm

(exp)ÞDcm
(exp) observed within experimental accu

racy.
We have performed numerical experiments@41# on decay

dynamics in m-gons with small numbers of vertices:m
53,4, . . . ,8.Initially, the particles@Nm(0)5106# were dis-
tributed randomly within the two distinct phase spacesVcm
and Vm described in Eq.~8!, and then allowed to escap
through a small openingD (!R). The conditiontem5300
was used for allm with the help of Eq.~1!. For m<8, the
late-time algebraic decay withdm5a51 is observed@42#
within typical temporal windows given by, approximatel
10tem,t<103tem. The observed decay spectra are exem
fied by the pentagon and the heptagon in Fig. 1. In gene
the overall-orbit late-time decay inm-gons with small num-
bers of vertices shows no noticeable deviation from the
mary relaxation@43# ~see the left inset in Fig. 1!. Thus, the
w-orbit amplitudesCm

(exp)(w) are derived from the observe
numbersNm

(exp)(t,w) through Eq.~9!, accounting for the es
timated w-orbit distribution function f 0m(w) and collision
timestcm(w) given in, respectively, Eqs.~4! and~5!. Further-
more,tcm(w) was tested experimentally@40# for different m
~see, e.g., the right inset in Fig. 1!.

The observed partial amplitudes~weights! Cm
(exp)(w) of

the slow primary relaxation are analyzed in Fig. 1. As se
they exhibit regular~small! and irregular~large! deviations
from the mean magnitudeCcm

(exp)5Ccm
(tot) indicated by a solid

horizontal line. The latter and the regular-orbit amplitud
Ccm

(reg) @evaluated as averagedCm
(exp)(w) without regard to the

large isolated peaks# are accumulated in Table I. From a
analysis of the deviations for the overallDDcm (5Dcm

(tot)

2Dcm
(reg) , with Dcm

(reg)5Ccm
(reg)) and average partial amplitude

DCcm (5Ccm
(tot)2Ccm

(reg)), obtained with the help of Table I
one can see that the vertex-splitting effects in the even-g
are more pronounced than those in the odd gons, simila
the case of intrinsic dynamics@17#. The a-amplitude devia-
tions DCcm and DDcm exceed considerably the typical e
perimental error (62%) and achieve a maximum magnitud
of 30% in the heptagon. This implies that the irregular-or
motion is substantially involved in the observed late-tim
primary relaxation that, similar to the integrability, violate
the a-amplitude equation@43#. On the other hand, the pos
tive sign of all thea-amplitude deviations signals on effe
tive enhancement of the primary relaxation related solely
regular orbits. The observed effect in vertex-splittingm-gons
with 3<m<8 is similar to the enhanced diffusion esta
lished @17# through the diffusion exponent 1<zm<3/2,
which also achieves a maximum atm57. We associate
therefore, the enhanced decay and diffusion with stabil
tion of nonballistic regime, which is due to some unspecifi
orbits whose collision angles are given by large peaks
Fig. 1.

B. Large numbers of vertices

The universal two-step relaxation scenario that follo
from Eq. ~3! is shared bym-gons with arbitrary numbers o
01622
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vertices. For largem52n with n53,4, . . . ,6, acrossover
from the universal exponential decay to universal (a51)
and nonuniversal (bm.1) algebraic decay regimes are e
emplified in Figs. 2 and 3 for the relatively small and lar
opening widthsD, respectively. Decay dynamics was sim
lated @41# for two initial statesVm and Vcm given by the
corresponding phase spaces in Eq.~8!. No secondary relax-
ation is found@42# in the wall-collision space case, resem
bling nonchaotic systems@16#, when particles are injected
@41# from a polygonal wall. This may be attributed to som
unspecified vertex-splitting effects in theVcm space, which
produce orderlike motion for allm and just enhance primar
relaxation. As seen from Figs. 2 and 3,Vm spaces withm
.8 exhibit secondary relaxation manifested by the algebr
decay exponentsbm.1, which are characteristic for the cha
otic BB @24# and SB@20,31,32#. Vm decay dynamics, unlike

FIG. 1. Analysis of the late-time algebraic decay simulated
the collisionVcm space of the pentagon (m55) and the heptagon
(m57). Symbols represent numerical data on thea-relaxation
w-orbit amplitudes~weights! C5

(exp)(w) andC7
(exp)(w) deduced from

the observed spectra of the survivedw-orbits Nt5
(exp)(w)

@[N5
(exp)(t,w)# andNt7

(exp)(w) with the help of Eq.~9! and simulated
at distinct timest520,30tem, with D50.03R. Line: the overall-
collision-angle amplitudeCcm

(exp) . Inset left: Points represent data o
Nt5 for the survived total orbits at late times and their analysis w
the help of Eq.~9!. Inset right: Points represent data onw-orbit
collision time tc5(w) simulated within the basic domain 0<w
<p/10. Line represents the same predicted in Eq.~5!.
1-4
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SLOW RELAXATION IN WEAKLY OPEN RATIONAL POLYGONS PHYSICAL REVIEW E68, 016221 ~2003!
its intrinsic dynamics treated in terms of the diffusion exp
nent zm @17#, moves away from that exhibited by the ge
metrically corresponding CB, with increasing number of v
ticesm. In the particular case ofD50.05R , shown in Fig. 2,
the universal relaxation remains stable untilm564, but
when m>ma

(exp)5128 the primary-relaxation observatio
window becomes closed. The regular-orbit relaxation
fected by vertices is assumably transformed into asingular-
orbit chaoticlike relaxation indicated by the dynamic dec
exponentbm'1.2. Qualitatively, the same follows from Fig

FIG. 2. Temporal evolution of the survived orbits in ration
polygons with a small opening widthD50.05R in log-log coordi-
nates. Reduced times are given through the escape characte
time te5300, chosen common for all cases with the help of Eq.~1!.
Points: numerical data for the decay of theVm space phase simu
lated byNm(0)5106 particles inm-gons ~squares! and the corre-
spondent CB~circles!.

TABLE I. Fitting parameters for the algebraic-decay amplitud
of primary relaxation of the collision spaceVcm simulated in the
weakly openm-gons with D50.05R. Notations:Ccm

(tot) and Ccm
(reg)

correspond to the average data on thew -orbit amplitudesCcm
(exp)(w)

observed in the decay spectra~see Fig. 1! and averaged over, re
spectively, all the collision anglesw and those with excluding
singular-orbit angles manifested by the high peaks;Dcm

(tot)5Dcm
(exp)-

the overall-orbit amplitudes of the algebraic decay given in Eq.~9!
and derived within the primary-relaxation observation window~see
the left inset in Fig. 1!.

m Ccm
(tot) Ccm

(reg) Dcm
(tot)

3 0.140 0.116 0.135
4 0.220 0.219 0.210
5 0.094 0.086 0.090
6 0.149 0.139 0.150
7 0.092 0.069 0.090
8 0.099 0.096 0.100
01622
-

-

f-

3, but the upper limit for thea-channel-observation window
shows sensitivity toD, becausema

(exp)532 for D50.20R.
We deduce that primary relaxation dominates in theVm

space with 3<m,ma
(exp) , when regular-orbit decay motion

is established with the universal decay exponentdm5a
51.

It is worth noting that the universal decay relaxation
m-gons withm,ma

(exp) can be related to theuniversal intrin-
sic relaxationin the closed infinite-horizon SB~of sideL and
scatterer disk radiusR). This superdiffusive relaxation wa
established by theR -independent diffusion exponentzR

53/2 observed forR,Ra @33#, whereRa5A2L/4 ~see Fig.
2 in Ref. @17#!. In the VR space of the corresponding LG
this universal relaxation is due to free evolution of u
bounded trajectories along all possible basic corridors@33#,
which remain open until R,Ra . Recently, this
D-independent intrinsic dynamics was discovered@44# in the
3D Hamiltonian models, lattice Coulomb gas, andXY. As
shown in Ref.@44#, the case of the critical superdiffusiv
dynamics withz(crit)53/2 is due to a divergent behavior o
spatial correlations generated by topological defects, wh
have the form ofvortex loops. In closed rational polygons
the vortexlike-orbit relaxation seems to be attributed to
heptagon, but the vortexlike excitations do not survive@17#
with the increasing of numbers of sidesm. This is not the
case of weakly openm-gons withm.ma

(exp) , whose decay
dynamics may be related to nonuniversal intrinsic diffus
relaxation, also observed@17# in the infinite-horizon SB with
R.Ra , when most Bleher’s basic corridors are closed.

stic

FIG. 3. Temporal evolution of the survived orbits in ration
polygons with a large opening widthD50.20R in log-log coordi-
nates. Notations are the same as in Fig. 2.
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Similar to the universal-nonuniversal-relaxation crosso
in the chaotic SB withR'Ra , the a-to-b-relaxation cross-
over inm-gons withm'ma

(exp) , is due to a transformation o
the motion induced by regular segments of boundary i
that by singular. In general, the effect of closing of thea
-relaxation channel can be described through the closin
some principal corridors in theVm space. This can be qual
tatively understood in terms of the increasing difficulty, asm
grows, in realizing long segments of free motion, which
tersect polygonal sides in the corresponding LG lattice
avoid the vertex angles~see the Appendix!. In contrast,b
relaxation is associated with a stabilization inVm phase
space of singular-orbit trajectories, which are effective
modified by vertices in rational polygons. These two co
plete regimes, revealed in the late-time relaxation, are a
ciated with long-lived orbits ensured by the integrals of m
tion of the 2D classical m-gons, which possesse
translational@45# andm-fold rotational symmetries.

Exploration of translational periodicity inm-gons with
largem provides characteristic timetcm(w)'tc`cos21(w) for
any regular orbit with initial collision anglew, wheretc`

5pR/2. This estimate follows from Eq.~5! and shows that
the idealsliding orbits, defined@17# by w'p/2 ~as circles
circumscribed below a givenm-gon!, leave the piecewise
linear part of boundary. Real sliding orbits, with finite col
sion timestcm

(slide) , can therefore be introduced as margin
regular orbits given by maximum collision angleswm

(slide)

5wm , i.e., withtcm
(slide)5tcm(wm). Conversely, theideal vor-

tex orbits are those which slide along the piecewise-line
part of the boundary without reflection. They can be int
duced formally by collision anglesFm/2, whereFm are ra-
tional vertex angles. In view ofm-fold rotational symmetry,
the existence of the real singular-orbitvortexlike excitations
might be justified by the local preservation of angular m
mentum for a certain set of vertex-correlated sliding orb
We therefore assume that the real long-lived sliding~regular!
orbits are precursors of the vortexlike~singular! orbits, and
thea-to-b-relaxation crossover can be treated in terms of
regular-to-singular orbit transformation that occurs at la
numbersma

(exp) .
Let us consider them-gon of side lengthLm5Pm /m, with

a small opening of a widthD (!Pm) that can be located a
any point of the boundary@24,42#. The observation condi
tions for two distinctideal regimesdriven by the ideal slid-
ing and vortex orbits can be introduced as follows. The
vorable survival conditions for thea-relaxation regime,
induced by regular part of boundary, should exclude vert
angle effects under the constraintm,ma . A geometrical
condition, at which the ideal vortices effectively escape fro
the billiard table, corresponds to the location of the open
with the widthD!Lm at one of the vertices. Conversely,
the late-timeb-relaxation regime regular orbits do not su
vive when any side is included into the opening, i.e., wh
D@Lm , with m.ma . Hence, thea-to-b crossover relax-
ation is ensured by the conditionD5Lm at m5ma . Taking
into account that the perimeterPm52mRsin(p/m) in
m-gons with a large number of sides is well approximated
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Pm52pR, one arrives at the desirable criterion fora-to-b
crossover, namely,

ma5
2pR

D
. ~10!

The criterion provides the estimatesma5126 and 31 for
experimental datama

(exp)5128 and 32, respectively. Thi
finding collaborates the idea that the observed long-liv
vortexlike excitations inb relaxation are due to modified
sliding orbits. Furthermore, their observation window (m
.ma) of chaoticlike excitations disappears in the limitD
→0. This follows from Eq.~10! and was experimentally
observed in Ref.@17#.

IV. SUMMARY AND CONCLUSIONS

The mild discontinuities caused by vertex angles and re
tive lengths of edges is the central problem of the intrin
dynamics of the almost integrable polygonal billiards co
monly discussed@1# in terms of orbital ergodicity, mixing,
entropy, coding, complexity@6#, pseudointegrability@3#,
orbit-length @14# and quantum-level@10,11# statistics, and
orbit-collision statistics@17#. The problem is now related to
the decay dynamics inm-gons, studied by the orbit surviva
probability Sm(t)5Nm(t)/Nm(0), given through the total
numbers of the surviving orbitsNm(t). The regular-orbit de-
cay spectra, which avoid vertex-splitting events and the
fore preserve a collision anglew, are also analyzed in term
of the partial-orbit numbersNm(t,w).

A general approach to the decay problem based on a
damental decay kinetic equation@15,16# naturally arrives at
the primary slow relaxation of regular orbits with asympto
behaviorSm

(a)}t21 @follows from Eq.~9!#. We have demon-
strated that thea channel of relaxation, attributed to bot
chaotic and nonchaotic billiards, is also characteristic of n
integrable rational polygons. The universal primary rela
ation, experimentally justified by the algebraic decay exp
nentdm5a51, is associated with regular orbits originatin
in the piecewise-linear segments of the polygonal bound
In the corresponding phase space, under conditionm,ma ,
these orbits are unbounded trajectories along which parti
move without splitting at vertices. This relaxation reflects
another universalintrinsic relaxation discovered@17# in the
chaotic SB with a small disk (R,Ra) and ensured@33# by
superdiffusive motion along Bleher’s basic corridors, w
the critical @44# diffusion exponentzR5z(cr)53/2.

Following the simplified polygonal orbit classification b
Gutkin @1#, the regular orbits are presented by the ‘‘infinit
past-to-infinite-future’’ trajectories, which exhibit a regula
behavior in the observedm-gon orbit-decay spectra given b
Nm

(exp)(t,w). Conversely, the singular orbits caused by t
‘‘infinite-past-to-vertex,’’ the ‘‘vertex-to-infinite-future,’’ and
the ‘‘vertex-to-vertex’’ trajectories expose pronounced~par-
tial! amplitudes in the primary relaxation inm-gons with a
small number of vertices (3<m<8). As shown through the
statistical analysis of the partial and overall amplitudes
served in the spectraNm

(exp)(t,w) and Nm
(exp)(t), the singular

orbits violate thea-relaxation amplitude equation, expecte
1-6
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from the absent or weak vertex-splitting effects. Unlike t
asymptotic behavior of the orbit-length spectrum@14#, the
universal primary relaxation therefore exhibits distincti
features in completely integrable and almost-integrable
liards. In the latter case of rational polygons, a nonballis
motion induced by vertices gives rise to enhanced decay
diffusion @17#, respectively, in open and closedm-gons with
a small number of vertices,m. For a large number of side
(8,m,ma), the primary slow relaxation is due to the o
derlike motion of the long-lived sliding orbits, which posse
the largest collision angles.

The sliding orbits are marginal regular orbits and a
therefore precursors of the singular, vortexlike-orbit chao
excitations, which become stable at a very large numbe
vertices, m.ma . The vortex excitations are establishe
through the slow nonuniversal secondary relaxation with
survival probabilitySm

(b)}t2bm. They are due to late-time
vertex-angle-correlation effects ensured by them-fold rota-
tional symmetry of a rational polygon. The domain for t
decay exponent, i.e., 1,bm,2, corresponds to that know
for the chaotic SB@20,31,32# and BB @24#, and the survival
probability functionSm

(b) can therefore be related@46# to the
corresponding waiting-time probability function discuss
@47# in the theory of open classical chaotic systems. Furth
more, by accounting for the findings of the SB decay dyna
ics by Fendrik and co-workers@31,32#, one can infer that the
secondary relaxation is due to thesingular trappedorbits
that move freely along Bleher’s reduced basic corrido
Similar to chaotic billiards, and unlike the case ofa relax-
ation, the observation conditions forb relaxation in rational
polygons are shown to be sensitive to initial phase-sp
conditions and to geometrical constrains. Indeed,
b-relaxation channel turns out to be closed if the parti
initial distribution is simulated@42# in the collision space
Vcm . In the case of theVm space, the secondary relaxatio
appears to be stable under the geometrical constrainm
.ma , where ma52mRsin(p/m)/D is established by the
a-to-b crossover-relaxation criterion. This criterion join
survival conditions for the ideal regular-orbit motion wi
those for the ideal singular-orbit motion generated, resp
tively, by piecewise-linear and the vertex-angle bound
segments. Finally, we have demonstrated through nonun
sal slow relaxation that the vertex-splitting effects in ration
polygons are dual with respect to vertex-ordering and ver
disordering effects.
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APPENDIX: REGULAR-ORBIT COLLISION TIME

In a givenm-gon the number of geometrically equivale
walls k is bounded above by
01622
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qm5H m for odd m

m/2 for even m.
~A1!

The current collision angle wkm with a wall k
(51,2 . . .qm) of a w-orbit with w5@0,p/2qm# is reduced
through the relationwkm5w2Qkm with the help of Qkm
5@2p/2,p/2#, defined as the smallest angle between
k-wall andx axis, namely,

Qkm5
p

2qm
H qm22k11 for oddqm

qm22k for evenqm .
~A2!

As exemplified in Fig. 4 form53, the estimates for the
wall-collision timestcm(w) are found through summation o
the numbers of intersectionsn(t,wkm) for a trajectory in-
duced by a givenw-set orbit in the corresponding infinite LG
lattice, namely,

ncm~ t,w![
t

tcm~w!
5 (

k51

qm

n~ t,wkm!. ~A3!

This estimation procedure can be exemplified by a relat
t cos(w13)5n(t,w13)3a3. The latter employes the fact that
distance between the equivalent walls is 3a3, where am
5R cos(p/m) stands for theapothemin a givenm-gon. This
yields

tcm~w!5amqmF (
k51

qm

cos~w2Qkm!G21

, ~A4!

whereqm andQkm are given in Eqs.~A1! and~A2!, respec-
tively. A straightforward estimation@45# of Eq. ~A4! results
in the collision timetcm(w) given in Eq.~5!.

FIG. 4. Estimation of thew-orbit collision time tcm(w) on the
bases of Eq.~A3! for the case ofm53. The regular piecewise
linear orbit a,b,c, . . . is represented by the infinite straight-lin
trajectory in the triangle LG lattice with the intersection-point s
quences 1,2, . . . ,n (t,wkm). The equivalent wallsk, the unreduced
collision angleswkm , and the axillar anglesQkm are shown.
1-7
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